Adaptive Machining for Efficient Manufacture and Repair of CFRP Components

Claus Bremer, BCT GmbH
Florian Feucht, WIWeB
Geometrical Adaptive Machining of Composite Components

1. Introduction BCT
2. 3D Measuring and Scanning
3. System Configurations
4. Best-fit / Shape Adaptation
5. Software Concept
6. Post-machining
7. Repair and Reworking
8. Conclusions
BCT's Background

- Established in 1986
- Location
 - Dortmund, Germany
 - Centre for Production Technology (CfP)
- Staff: A team of specialists
 - Engineers
 - Computer scientists
 - Mathematicians
- BCT's core know-how:
 Automated manufacture and repair of individually shaped parts
3D Measuring and Scanning

Task: Geometrically adaptive machining of individually shaped components

- Capturing of the component geometry is essential
- A multitude of measuring and scanning technologies are available
In-process 5-Axis Measuring and 6-Axis Scanning

Tactile Probing
- Standard on NC machines
- Cost effective
- Precise
- Slow
- Only single points

Line Scanning
- Integration via BCT solution
- Quick scanning
- Dense point cloud
- Less precise than probing
- Influence of surface properties
External Scanning Systems

<table>
<thead>
<tr>
<th>CMM</th>
<th>Arm</th>
<th>Tracker</th>
<th>Robot</th>
</tr>
</thead>
<tbody>
<tr>
<td>points, tactile</td>
<td>points, tactile</td>
<td>points, tactile</td>
<td>structured light</td>
</tr>
<tr>
<td>scanning, tactile</td>
<td>line, laser</td>
<td>line, laser</td>
<td></td>
</tr>
<tr>
<td>points, laser</td>
<td>line, tactile</td>
<td>line, laser</td>
<td></td>
</tr>
<tr>
<td>line, laser</td>
<td>line, tactile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Adaptive Machining Configurations

In-Process Scanning
- Tactile probing or line scanning
- Direct measuring in the NC process
- Relatively expensive scanning time on NC machine
- No additional fixtures and part handling
- Measuring in the clamping position of machining

External Scanning
- Choice of ideal scanning technology
- Scanning and machining in parallel
- Less expensive scanning time on external scanning device
- Additional fixtures and part handling
- Clamping situation must be identical for scanning and machining!
Adaptive machining is used when components are shaped individually

- Machining with fixed NC programs is not feasible
- Tool paths must be adapted to the as-is geometry of the components
Best-fit vs. Adaption

Best-fit:
Correction of *position*

Shape Adaption:
Correction of *position* and *shape deviations*

Algorithms are **not depending** on application

Algorithms are **application-specific**

<table>
<thead>
<tr>
<th>Position 1</th>
<th>Position 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape 1</td>
<td>Shape 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position 1</th>
<th>Position 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape 1</td>
<td>Shape 2</td>
</tr>
</tbody>
</table>
Concept of OpenARMS

Open Adaptive Repair and Manufacturing Software

Setup mode:
for definition of adaptive machining projects

Run mode:
for adaptive machining in automatic production
Turbine Applications: Blades, Vanes & Blisks
Milling & Metal Deposition for Manufacturing & Repair
Turbine Applications: Casings & Combustors
Milling & Metal Deposition for Repair
Applications in the Field of CFRP

Geometrical deviations create problems in many steps of CFRP manufacturing and repair

- Adaptive machining for automated
 - Post-machining and
 - Repair / Reworking
Post-Machining of Sacrificial Material

Task: Keep part dimensions (thickness, height, ...) within tolerance
Approach: Adaptive machining with scanning, shape adaptation and 5-axis milling

Reference: European Collaborative Project “LOCOMACHS” - Low cost manufacturing and assembly of composite and hybrid structures
Post-Machining to Minimize Shimming

Task: Minimize shimming operations
Approach: Adaptive machining of mating surfaces in order to achieve flush fitting

Reference: European Collaborative Project “LOCOMACHS” - Low cost manufacturing and assembly of composite and hybrid structures
Task: Automation of scarfing process for patch repair
Approach: Mobile 5-axis milling system
Industrial Collaboration: Mobile 5-Axis Milling System for Patch Repair Preparation

- WIWeB: Customer & repair process development
 Wehrwissenschaftliches Institut für Werk- und Betriebsstoffe, Hauptmann Florian Feucht

- PRIMACON GmbH: Mobile machine

- Hufschmied GmbH: Cutting tools

- BCT GmbH: Software, scanning, integration
Selected Material Removal Technology: Milling

- Optimal macroscopic geometry of milled surface
- Optimal microscopic surface condition for perfect bonding
- Fast and reliable process
Optimization of Milling Strategies and Tools

- Development and testing of cutting tools
- Cylindrical cutting tools with special edge geometries
- 5-axis milling strategies
Intense Investigations and Testing

- Selection of best surface activation and bonding technology
- Nearly 100% strength of patched area compared with original condition
- Proven patch repair process chain
Cutting Tools

- Broad experience in composite cutting tools
- Highly specialized cutting edge geometries
- Extremely high material removal rate and long tool life
Mobile 5-Axis Milling Machine

- Lightweight mobile machine with vacuum clamping
- 5-axis milling with high-speed spindle
- Integrated line scanning sensor
Definition of Scarfing Geometry

- Patch patterns of all kinds via 2D / 3-axis pocket milling programs
- Integrated NC path generator for circular and rectangular patches
- Special shapes via CAM interface
Optical Scanning

- Machine-integrated line scanning
- Automatic capture of topology of unknown repair area
- Precise optical scanning
Adaptation

- 3D surface model generated from scanning data
- Transfer of 2D/3-axis master milling programs onto 3D as-is geometry
- Geometrically adapted 5-axis NC programs
Conclusions

- Deviations from nominal shape play a decisive role in manufacturing and repair of composite components.

- Geometrically adaptive machining compensates shape deviations and inaccurate clamping positions.

- Many geometrically critical post-machining and repair processes can be automated.

- The automatic mobile repair system shows the huge capabilities of adaptive machining in composites applications.

- Further developments are on the work plan: Load path optimized scarfing, integration of NDT and surface activation, applications in wind rotor blades and automotive.
Thank you for your attention!