Development of flexible systems for automated assembly and machining of large CFRP structures

CFK Convention 2013 - June 12th, 2013

M.Sc. Juan Ramirez
Fraunhofer Project Group FFM, CFK NORD [Stade]

Fraunhofer IFAM [Bremen]
Prof. Dr. Bernd Mayer

Project Group Joining and Assembly, FFM [Stade]
Dr. Dirk Niermann

Assembly Technology
Joining Technology
Machining Technology
Metrology / Robotics
Overview

1. Introduction / State of the Art

2. Generic Flexible Automated Holding Fixture

3. Automated Measurement of Machine/Grippers

4. Automated Measurement of Part Geometry

5. Shape and Position Adjustment

6. Adaptive Mounting and Machining Processes

7. Summary
State-of-the-Art Assembly Systems

- Heavy-duty holding-fixtures of steel which require a specific foundation
- Expensive fabrication due to positioning tolerances of mechanical stops that define the part geometry
- Time-consuming measurement and adjustment processes
- Specially designed for a specific part and so unable to react to design changes
- Manual assembly procedures due to unique geometry of each part

Source: Airbus
Approach for Flexible Automated Holding Fixtures

- Steel support frame
 - Between floor & actuators
 - Inexpensive fabrication
- Actuators
 - High position accuracy
 - From 1-DoF to 6-DoF
- Flexible vacuum grippers
 - Between part & actuators
 - Exchangeable/identifiable
- Automated measurement of part and machine
- Adaptive mounting and machining processes using standard industrial robots

Generic Prototype for Flexible Holding Fixture
Generic Prototype for Flexible Holding Fixture

- Flexible steel support frame
 - Horizontal/vertical robot field
 - 3x4 grid
- 6 hexapod robots
 - High stiffness
 - Position accuracy < 100μm
 - 6-Degrees of Freedom
- Flexible vacuum grippers
 - Non-part specific
 - Triangular/passive
 - Half spherical mech. stops
 - F/T sensors
Automated Measurement of Machine/Grippers

- World coordinate system as global absolute reference
- Identification of robot bases S^B to world coordinate system S^W
 - $T^B_W = (T^R_W)^{-1}T^B_R$
- Identification of gripper S^G to TCP coordinate system S^{TCP}
 - $T^B_R = T^G_R (T^G_{TCP})^{-1} (T^B_{TCP})^{-1}$
Automated Measurement of Part Geometry

- Measurement of
 - CFRP-part shape
 - CFRP-part position
 - Components (e.g. clips, frames)

- Use of a non-contact, high precision, laser based system
 - Laser Radar (Nikon Metrology)
 - Laser Tracker/T-Scan (Leica)

- Comparison to CAD-drawings to obtain part deviations
 - Input for shape and position adjustment
Shape and Position Adjustment

- Iterative algorithm
 - Part shape/position measurement
 - Comparison to CAD
 - Inside tolerances? → yes/no
 - Calculation of adjustment
 - Next iteration
- Integration of force information
 - Grippers with 6D-F/T sensors
- Best-Fit of minimal shape deviations and stress reduction
 - Tolerance management
 - Gap reduction
Video

Deformation Force Measurement as a function of gap & component geometry
Adhesive Bonding Technology and Surfaces

Adaptive Mounting and Machining Processes

- Each CFRP-Part has a unique geometry
 → Teaching methods cannot be applied
- Hierarchical robot calibration
 - Improvement of absolute accuracy of standard industrial robots
- Sensor-aided CAD-CAM tools
 - Adaptive path planning for industrial robots to satisfy unique geometry
Flexible Machining of CFRP Structures

Conventional Machining
- one spindle for all machining tasks, no parallel machining
- tactile, time-consuming part measurement
- no established, reliable process monitoring
- high investment costs (> 5 Mio. €)
- long lead time

Robot Based Machining
- parallel machining by several robots / spindles
- non-tactile, fully automated measurement
- fully integrated process monitoring, process reliability: +40%
- investment costs: -30%
- lead time: -50% [by parallel processing]
Flexible Machining of CFRP Structures - Challenges

Process Monitoring
- temperature
- force
- wear state
- tool break
- edge monitoring
- spindle power

Machining Process
- tool type
- tool diameter
- spindle speed
- feed rate
- machining strategy

Dust Removal
- removal strategy
- power
- filter
- adaptive removal systems

Machining System
- accuracy
- stiffness
- vibration behavior
- offline programming
Machining Test Facility at CFK NORD, Stade
Summary

- Technologies
 - Flexible holding fixtures
 - Automated part geometry and machine measurement
 - Shape and position adjustment
 - Robot calibration and sensor-aided CAD-CAM tools

- Applications
 - Assembly processes (i.e. adhesive joining of frames)
 - Machining of parts (i.e. milling of windows)

- Outcome
 - Reduction of production costs
 - Reduction of cycle times -> Increase of Production Rate
Thank you for your attention!

Parts of the presented investigations were conducted with support of the Lower Saxony Ministry for Economics, Labor and Transport within the project: CFK-AFMO and ProsihP FFM